aaVad Instraument

**Electromagnetic Flow Meter** 

#### **Working Principle**

Electromagnetic Flowmeters are based on Faraday's Law of Electromagnetic Induction. In an Electromagnetic Flowmeter, the magnetic field is generated by a set of coils. As the conductive liquid passes through the electromagnetic field, an electric voltage is induced in the liquid which is directly proportional to its velocity. This induced voltage is perpendicular to both, the liquid flow direction and the electromagnetic field direction. The voltage sensed by the electrodes is further processed by the transmitter to give standardized output signal or displayed in appropriate engineering unit. The electromagnetic flow meter accurately measures the flow rate of conducting liquids or slurries flowing in closed pipes. It is obstruction less and hence does not add pressure drop to the process. Absence of moving parts eliminates the need for maintenance. The performance of the instrument is not affected by the properties of the material such as corrosiveness, viscosity and density.

#### **Features**

- Empty Pipe Detection
- Low Flow Cut off
- Display in User Selectable units
- Programmable Pulse on-time
- Adjustable Damping

- Full bore type
- Suitable for conductive liquids
- Maintenance free
  - Simple & cost effective construction
- Flow measurement in forward and reverse direction



## **Technical Specifications**

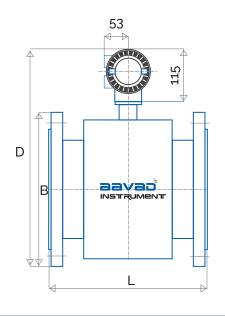
| Model                  | AMAG-I / AMAG-R / AMAG-O            | Flanged std                      | ANSI 150                                      |
|------------------------|-------------------------------------|----------------------------------|-----------------------------------------------|
| Media                  | Conductive liquid / Slurry          | End connection                   | Flanged                                       |
| Line size              | 15 NB to 500 NB, Customised         | Accuracy                         | 0.5 % of the reading                          |
| Conductivity           | >10 µS/cm                           | Display                          | LED/LCD                                       |
| Excitation             | Pulsed DC                           | Display unit                     | M3, ltr, Gallen all standard engineering unit |
| Working pressure       | 10 kg/cm2                           | Power supply                     | 85 to 230 v ac,50 Hz / 24 V dc                |
| Working<br>temperature | 70°c for rubber , 120°c for<br>PTFE | Out put                          | 4-20 mA, Pulse, Relay<br>(Optional)           |
| Velocity               | 0.3 to 10 m/s                       | Communication                    | RS 485, RS 232, HART<br>(Optional)            |
| Sensor housing         | MS/SS/CS                            | Protection class for sensor      | Std 65, Optional IP 68 for remote             |
| Measuring tube         | ss304                               | Protection class for transmitter | IP 67                                         |
| Electrode              | ss 316 L / Hastelloy C              | Transmitter MOC                  | Aluminum Die cast                             |

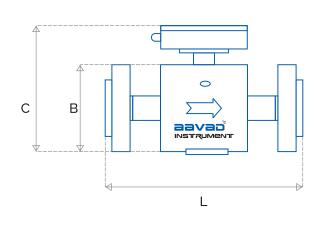
### **Industry Served**

- Food Industry
- OEM Industry
- Process Industry

- · Chemical Industry
- Automation Industry
  Waste Water Managment

Energy


• Thermal Power Energy

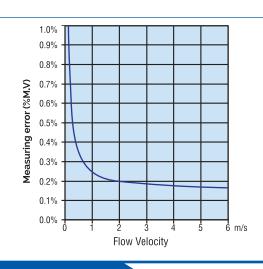





# **Dimension Chart**

| DN     | L (mm) | B (mm) | C (mm) | D (mm) | PCD of Flange |
|--------|--------|--------|--------|--------|---------------|
| DN 15  | 191    | 89.9   | 193.9  | 253.9  | 60.5          |
| DN 20  | 191    | 98.4   | 293.4  | 263.4  | 70.0          |
| DN 25  | 191    | 107.9  | 212.9  | 272.9  | 79.5          |
| DN 32  | 191    | 117.5  | 222.5  | 282.5  | 89.0          |
| DN 40  | 191    | 127.0  | 232.0  | 292.0  | 98.5          |
| DN 50  | 192    | 152.4  | 257.4  | 317.4  | 120.5         |
| DN 65  | 192    | 177.8  | 282.8  | 342.8  | 139.5         |
| DN 80  | 192    | 190.5  | 295.5  | 355.5  | 152.5         |
| DN 100 | 237    | 228.6  | 333.6  | 393.6  | 190.5         |
| DN 125 | 240    | 254    | 359.0  | 419.0  | 216.0         |
| DN 150 | 240    | 279.6  | 384.6  | 444.6  | 241.5         |
| DN 200 | 310    | 342.9  | 447.9  | 507.9  | 298.5         |
| DN 250 | 362    | 406.9  | 511.9  | 571.9  | 362.0         |
| DN 300 | 412    | 482.6  | 587.6  | 647.6  | 432.0         |
| DN 350 | 412    | 533.4  | 638.4  | 698.4  | 476.0         |
| DN 400 | 515    | 596.4  | 701.4  | 761.4  | 539.5         |
| DN 450 | 515    | 635.0  | 740.4  | 800.4  | 578.0         |
| DN 500 | 516    | 698.5  | 803.5  | 663.5  | 635.0         |



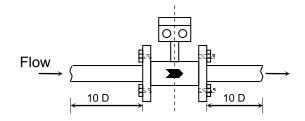

## **Minimum - Maximum Flow Table**

| Sing in man | Flow Range (m³ / hr) at 0.3 to 10 M/S |         |  |
|-------------|---------------------------------------|---------|--|
| Size in mm  | MINIMUM                               | MAXIMUM |  |
| 15          | 0.19                                  | 6.35    |  |
| 20          | 0.34                                  | 11.34   |  |
| 25          | 0.53                                  | 17.66   |  |
| 32          | 0.87                                  | 29.93   |  |
| 40          | 1.36                                  | 45.21   |  |
| 50          | 2.12                                  | 70.65   |  |
| 65          | 3.58                                  | 119     |  |
| 80          | 5.42                                  | 180     |  |
| 100         | 8.48                                  | 282     |  |
| 125         | 13.25                                 | 441     |  |
| 150         | 19.08                                 | 635     |  |
| 200         | 33.92                                 | 1130    |  |
| 250         | 53.01                                 | 1766    |  |
| 300         | 76.34                                 | 2543    |  |
| 350         | 103.91                                | 3461    |  |
| 400         | 135.72                                | 4521    |  |
| 450         | 171.77                                | 5722    |  |
| 500         | 212.06                                | 7065    |  |

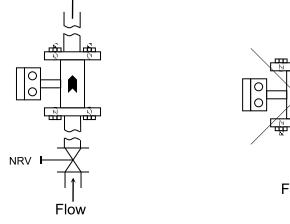
# Flow Nomograph

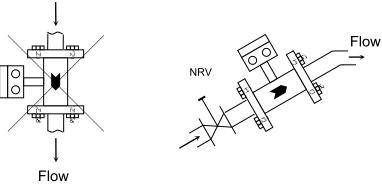





#### **Installation Guide**

The Primary Flow Tube can be installed at any point in the pipe run either horizontal or vertical provided the following conditions are met:

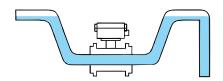

The direction of flow through the pipe is same as indicated on


the primary flow tube by a red arrow.

Straight lengths of maximum 10 D on upstream and minimum 10 D on down-stream as shown. If disturbances like cork screwing or vortex flow conditions are present straight lengths should be increased or flow straighteners should be used. Flaps, slidegates, valves etc should be arranged at a distance of at least 5D downstream of primary flow tube.

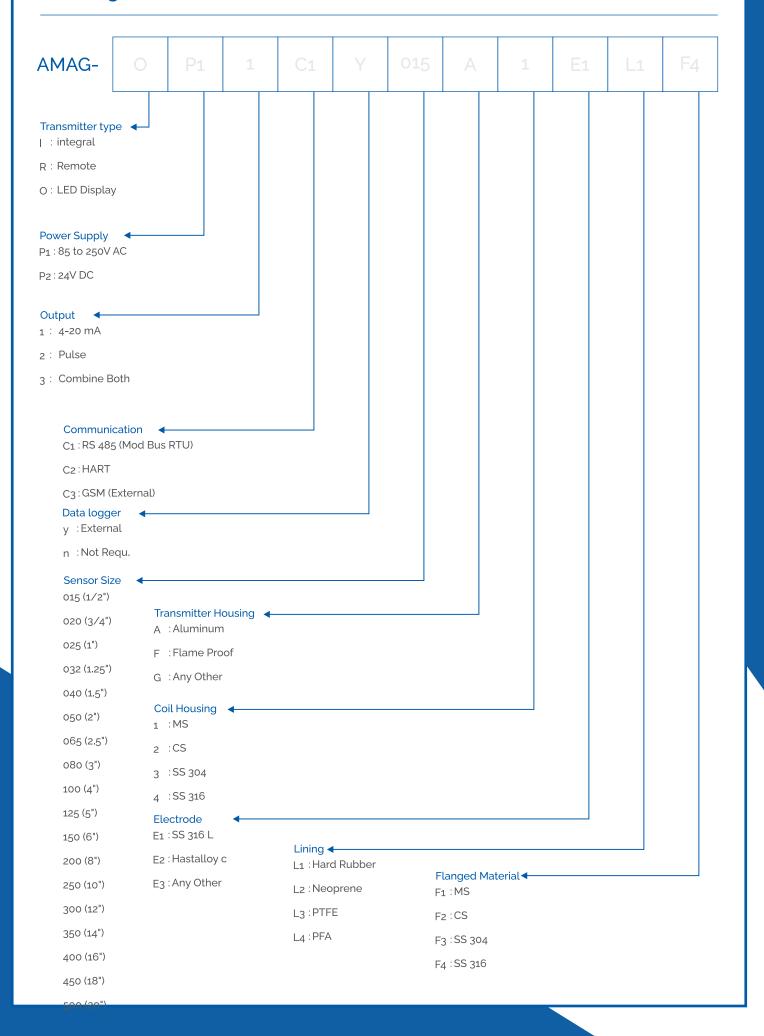


Ensure that primary flow tube remains completely filled by the fluid under measurement—even under no flow condition. This ensures trouble free and reliable operation of the Flow Meter. Select a location on the pipe, which will always run full of liquid. For vertical installations the direction of flow against Gravity ensures full pipe. Some of the recommended installations are as under:






Recommended


**Not Recommended** 

Recommended



For partially filled pipes or pipes with download flow and free outlet the flow meter should be located in a U-tube.

#### **Ordering Code**







**Pressure** 

Flow



**AAVAD PRODUCT BASKET** 



Cable







Level





#### **AAVAD INSTRUMENT PRIVATE LIMITED**

since 2009

HO: 216-217, Sangath Mall - 1, Opp. Engineering College, Motera, Ahmedabad - 380005, Gujarat, India. Bank: Kotak Mahindra Bank LTD | A/C No.: 7246181876 | IFSC Code: KKBK0000839 | Branch Code: 0839 GST: 24AAXCA8978K1ZL | PAN & IEC: AAXCA8978K | UDYAM: GJ-01-0217363 | UIN: U29309GJ2022PTC136707